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We prove a de Montessus de Rallore type theorem for radonal functions R nq of
type \,2, q) formed by best approximation over the whole plane to functions fl ~)

meromorphic in the plane with exactly q poles. This resolves a question raised
by Lubinsky and Shisha (.I. Approx Theory 36 (1982). 277-2931. (1988 Academ'c

Pre~s, Inc.

1. INTRODUCTION

In [4], Lubinsky and Shisha considered best approximations of complex
functions fez) by rational functions formed by minimizing a metric which
involves values off(z) throughout the plane. They proved existence, non­
uniqueness, and that sequences of best approximations converge in planar
Lebesgue measure under general conditions. They also raised the question
as to whether there is an analog for these approximations of the classical de
Montessus de Ballore theorem for Pade approximations (see Baker [1],
Wallin [5]). It is the purpose of this paper to answer their question in the
affirmative.

I shall now state a special case of our main result, for meromorphk
functions of finite order. Let &nq denote the class of rational functions with
numerator and denominator of degrees at most nand q, respectively. Let
D(z, u) denote the chordal metric on the Riemann sphere, that is,

lz-ul
D(::, u) = {(l + Iz12)(1 + luI2)}12'

z, U E iC = c u {.x}, ( 1.1)

and let

PD(f, g) = It DU(::.), g(::.)) exp( -exp(lzl)) dx dy, (1.2)

where == x + iy for measurable functions f, g: C -+ C.
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THEOREM 1.1. Let f be a meromorphic function offinite order in C, with
exactly q poles (counting multiplicity). For each positive integer n, let R~q be
a rational satisfying

(1.3)

Then

lim R~q(z) = f(z)
1"1 _ CXJ

uniformly in compact subsets of C not containing the poles off Further,

lim sup PD(f, R~q)l;'nlogn < 1,
n--+·x

(1.4 )

and uniformly in compact subsets of C not containing the poles, we have

lim sup If(z) - R~q(zW'n'ogn < 1.
n~ or:;

(1.5 )

We remark that exp( -exp(lzl)) in (1.2) can be replaced by
exp( -Q(lzl)), where Q(r) is any positive, continuous function defined on
[0, (0) such that

for all iY. > O.

Regarding the proofs, use is made of a lemma by Goncar [2] establishing
uniform convergence of a sequence of analytic functions given that they
converge in one dimensional Hausdorff measure.

In Section 3, we prove a lemma which relates the uniform norm of a
polynomial in a disc to the size of the set on which the absolute value of
the polynomial is bounded by 1. Use is also made of Cartan's lemma on
small values of polynomials, of standard measure-theoretic techniques, and
of the elements of complex analysis.

The paper is divided as follows: Section 2 clarifies the notation used in
this paper, and lists the main results. Section 3 proves lemmas needed for
the major results of this paper. Section 4 proves the theorem on uniform
convergence, while Section 5 proves a theorem relating to the rate of con­
vergence.

2. NOTAnON AND STATEMENT OF RESULTS

(1) Throughout, meas will denote planar Lebesgue measure, and J1
will denote a measure on the finite complex plane C, normalized so that

(2.1 )
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Further, we shall assume that we are given a function Q(r), defined in
[O,Y)), such that

Q(r) is positive In [0,00) and Q'(r)/r is non-decreasing in
[0, Xi). (2.2)

The measure f.1 will be assumed to have density function e - Q. More
precisely, we assume that for every measurable set E in the plane

f.1(E) = If exp( - Q( Izl)) dx dy,
E

where z = x + iy. Note that from (2.2) and (2.3)

f.1(E) ~ measlE)

for any measurable set E. Further if E ~ {z: Izl ~ r},

(2.3 )

(2.4 )

f.1(E)~e-Q(r) measlE). (2.5 )

(2) Throughout, as in Lubinsky and Shisha [4], D(z, u) will denote
a fixed function, defined and continuous on ( x iC, satisfying

D(z, U)E [0,1]

D(z, u) = D(u, z)

D(z, u)=O~z=u.

We also assume that for each z E iC,

(2.6)

D(z, 00) = lim D(zo, u)
lui ----)- 'YJ

=0 - =

and we set

exists and is positive, (2.7)

D( 00, co) = o.

Finally, we shall need three more restrictions on D: Given a compact set
K ~ C, there exist positive constants C 1 and rt. such that

z, WEK. (2.8A)

Further, we shall assume that there exist positive constants C2 and f1 such
that

Z, IV E iC. (2.8B)
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Given a bounded set K t:;::;. C,
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lim infmin{D(z, w): zEK} >0.
l"'I~a:;

(2.9)

We note that (2.6), (2.7), (2.8A), (2.8B), and (2.9) are satisfied by the chor­
dal metric in (1.1).

(3) Corresponding to D, we define a distance between (Borel)
measurable functions f, g: C ---+ C U { 00 } by

PD(f, g) = If D(f, g) dfl· (2.10)

(4) Throughout C, C 1 , C2 , C 3 , ••• denote positive constants indepen­
dent of nand z. The same symbol C may denote different constants from
line to line. {Tn }:'= 1 will denote a sequence of positive numbers such that
Tn/n increases as n increases, and

lim Tn/n = <:1).

The most important example is

(2.11 )

Tn =n log n, n= 2,3,4, ... ,

which arises in considering meromorphic functions of finite order.

(5) Given non-negative integers nand q, the class of rational
functions with complex coefficients and numerator and denominator
degrees at most nand q, respectively, will be denoted by lJ/nq .

We can now state our main results. The following is an analog of the de
Montessus de Ballore theorem for Pade approximants (Baker [1, p. 139]).
The distinguishing feature of such a result is that without any a priori
assumptions about the poles of the rational functions we obtain uniform
convergence of these functions.

THEOREM 2.1. Let q be a non-negative integer. Let f be meromorphic in
C with exactly q poles, counting multiplicity. Let PD be a distance function
satisfying (2.1)-(2.10), and let {Tn} satisfy (2.11). Let there be given
rational functions R nq E &/nq, n = 1, 2,3'00" such that

limsupPD(f, Rnq)liTn< 1.
1l ---+ 00

(2.12 )
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Then the only limit points of the poles of {R nq } 1:;C~ I are the poles off and

lim sup If(z) - Rnq(z)i /;in < 1,
n"""'" ce·

(2.13)

un(formly in compact subsets of C not containing the poles of f

The next result shows that, under certain additional assumptions, one
can find a sequence of rational functions satisfying (2.12).

THEOREM 2.2. Let f(z) = g(z)IP(z), where P(z) is a monic po(vnomial of
degree q, and g(z) = Lj~ 0 ajz j is entire, with

lim sup la) Ii) < L
j_ x

Assume further that

lim inf Q(p - rnin)1Tn > 0,
n -+ 'X

for all 0 < p < 1. Let

(2.14 )

(2.15)

(

n ,) I
Rnq(z) = i~O ajz

1 IP(z),

then (2.12) holds.

n=I,2,3, ... , (2.16)

Remarks. (i) The condition (2.15) can be substantially weakened, but
we omit the more cumbersome formulation.

(ii) Theorem 1.1 is an easy consequence of Theorem 2.1 and
2.2~see Section 5.

(iii) It is easy to see that for a given function f(z) that is
meromorphic in C with exactly q poles, one can always represent f in the
form f = glP, as in Theorem 2.2, and one can find {Tn} and Q satisfying
(2.2), (2.11), (2.14), and (2.15). Hence, Theorems 2.1 and 2.2 may be
applied in a wide variety of situations.

(6) In some proofs, we shall use the concept of one dimensional
Hausdorff content. Given E c:::; C, we. set

Here the inf is over all countable sequences of bans {B i } with diameters
{d(B,)} whose union covers E. Given functions f, j" f2 .... , and a bounded
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measurable set K, we say that fn converges to f in ml-measure in K if for
each 1»0

as n -400.

Further we say that fn converges to f almost everywhere with respect to m 1

in Kif

mdZEK: lim sup If,b)- f(z)1 >O} =0.

3. PRELIMINARY LEMMAS

LEMMA 3.1 (Cartan's lemma for planar Lebesgue measure). Let P(z) be
a monic polynomial of degree n ~ 1. Let H> O. Then the inequality

IP(z)1 > H n

holds outside at most n balls, whose union has planar measure at most 4neH2
•

Further, the sum of diameters of these balls is at most 4neH.

Proof See Baker [1, p. 194]. I

LEMMA 3.2 (Goncar). Suppose that the sequence {fn} converges to the
function f in m 1 measure inside the domain Q. Assume also that each of the
functions fn (n = 1, 2, ... ) is meromorphic in Q and has at most q ( < 00) poles
in Q. Then

(a) f is meromorphic and has at most q poles in Q.

(b) Iff has exactly q poles in Q, then for n large enough, we have that
fn also has exactly q poles in Q, and the poles of the functions fn tend to the
poles ZI, Z2,"" Zq (taking account of multiplicity) off, and the sequence {f,,}
converges uniformly on the compact subsets of Q' = QI {z;}r~ I'

Proof See Goncar [2, p. 507]. I

LEMMA 3.3. Let 0 < I> < 1 and r> O. Assume P(z) is a polynomial of
degree at most n, satisfying

meas {z: IZ I ~ rand 1P(Z ) I ~ 1} ~ 1>.

Then for Izi ~ r,

IP(z)1 ~ (c max{ 1, r }jB)n,

where c is independent of n, P, 1>, and r.

(3.1)

(3.2)
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Proof We note that the result is trivial if P == O. So assume P t=. O. Then
we may write

In n'

IP(z)1 =6 n Iz-z;1 n Il-z/zJ
i=1 t=m+l

(3.31

where 6>0, O~m~n'~n, ZI,Z2"",Zm lie in {z: Izl~2r} and Zm+l, ... , 2"

lie in {z: Izi > 2r}. Suppose first m = O. Then

n'

IP(z)j =6 n 11-z/z;1
i=1

for Izi ~ r.

Since the set in (3.1) is non-empty, we deduce

so that, by (3.4), for Izl ~ r,

n

IP(z)1 ~2n' n 11-z/z;1
;~1

~3".

(3.4 )

This establishes (3.2) in the case m = O. Suppose next m> O. By (3.3), for
Izi ~r,

m

IP(z)1 ~6 n Iz-z;1 mn'-m,
;~1

so that, by (3.1),

8~meas{z:lzl~r and 6Dllz-zll(!)n'-m~1}

by Lemma 3.1.

Therefore,

6 ~ (4en/8 )""2 2n' - m ~ (C/8)",
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where c is independent of n, P, s, and r. Then, by (3.3), for Izi < r,

IP(z)1 <(c/st (3,r (3/2t'-m

«cmax{l,r}/st. I

4. PROOF OF THEOREM 2.1

We divide the proof of Theorem 2.1 into a series of lemmas. Throughout
this section we assume that f and {R nq } are as in Theorem 2.1, and that, in
particular, {Rnq } satisfies (2.12).

LEMMA 4.1. Let r?: 1, {Zl};~l be the poles of f Let O<l/<min
{ 1, nr2/(2q)}. Then there exists 0 < J < 1 < S such that for all n large enough,

meas{z: Izl <r and Iz-zil ?:'l, i= 1, 2'00" q

and If - Rnql (z) ?: Jrn}<S-rn. (4.1)

Proof By (2.10) and (2.12), there exists 0 < (} < 1 such that for large
enough n,

(4.2)

Let K> 1 be such that K8 < 1, and let

~,= {z: Izi <r and Iz-zil ?:'l, i= 1, 2'00" q

and D(f(z),Rnq(z))?:(K8(n}.

Now, by (4.2),

Therefore,

Hence, by (2.5) and (4.3),

meas(~,) <eQ(r) jl('§n)

<(K,)-rn

for n large enough, where K' > 1. Now let

F={z:lzl<r and Iz-zII?:'l, i= 1,2'00" q}.

Thenf(F) = {J(z): zEF} is bounded.

(4.3 )

(4.4 )
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Further, if Z E F\ <§n, then for any i: > 0, we have

(4.5)

for n large enough. It follows from (2.9) that there exists a positive constaI'.t
C and a positive integer no such that

Then by (2.8A), there exists eland ct> 0 independent of n such that

Hence, by (4.5), for n ~ no and Z E F\ ':§,,,

where £5 E (0, 1). Finally, if

ZE 1Hl,,= {z: Izi ~r and IZ-Zil ~II, i= 1, 2, ..., q,

and If - R"q! (z)):: 0").

then z E F. But z rj; F\/fJ" by (4.6). Hence.

In particular, it follows from (4.4) that

meas(IHl,,) ~ meas(q},,) ~ (K' ) - r,.

Hence the result. I

(4.6)

LEMMA 4.2. Under the conditions of Lemma 4.1 there exists 0 < ii' <
1 < S' such that. for all n large enough,

meas{z: Izi ~r and Iz-zil )::1], i= 1, 2,..., q,

and IR"+Lq(Z)-R".l:)I)::Unrn}~(S,)-rn. (47)

Proof If

then either
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or

Hence, by Lemma 4.1
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meas{ z: Izi ~ rand Iz - zil ?:: 1/, i = 1, 2, ..., q,

and IRn+1,iz)-Rnq(z)1 ?::2Vn} ~25-rn.

The lemma follows by choosing suitable J' and 5'. I

LEMMA 4.3. Assume the conditions of Lemmas 4.1 and 4.2. Further, write

(4.8)

where Pn and Qn are polynomials of degree at most nand q, respectively, and
Qn is normalized so that

Qn(z)= TI (z-z"J TI (l-zjznJ,
I=nil ~ 2r IZnil > 2r

and 2,,1' Z,,2'"'' Z"q are the zeros of Q". Let L1 > 1 and

(4.9)

n = 1, 2, 3,.... (4.10 )

Then there exists 0 < J [ < 1 such that for n large enough,

IR,,+l,q(z)-Rnq(z)1 ~Jin

Proof For n large enough, let

for Izl~r,z$E"uE,,+[. (4.11)

H,,(z) = P,,+ [(z) Qn(z) - P,,(z) Qn+ I(Z) (4.12)

= (Rn+ l.iz) - Rnq(z» Q,,(z) Q" + 1(z). (4.13)

From (4.9), and as r> 1,

for Izi ~ r.

Therefore for 1=1 ~ r,

From Lemma 4.2,

meas{z: Izi ~r and IZ-Zil ?::'1, (i= 1, 2'00" q)

and IH,,(z)l?:: (3r)2q (J,)rn} ~ (5,)-rn.
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Let 8' < 6" < 1. Then for n large enough,

;:::: rrr"/2 - (5') - Tn

133

as qll:;;;; nr 2/2 and if n IS large enough. Applying Lemma 3.3 to the
polynomial

which is of degree at most n + q + 1, we obtain

where c is independent of n. Next, if IZnil ;:::: 21' and Izi :;;;; r,

so from (4.9)

(4.14)

(4.15 )

Then (4.13), (4.14), and (4.15) show that for Izl:;;;;r and z¢EfluEul '

Clearly (4.11) follows with a suitable choice of 8 1 , I

LEMMA 4.4. Assume the conditions of Lemmas 4.1, 4.2, and 4.3. Then
there exists a function g, defined everywhere except possibly on a set F of
ml-measure zero, such that R"q converges to g in nil-measure in Izj:;;;; r as
II ---+X), and

lim Rflq(z) = g( z), :: ¢ F.
n ---+ 'XJ

Proof For n large enough, let

x

FfI= U E k ·

k=n

Now by Cartan's lemma (Lemma 3.1), and by (4.10),

ml(En ):;;;; 4enn -.1.

(4.161
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Hence,
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YO

m 1(Fn ) ~4en I k-.d
k~n

-40 as n -4 00, since L1 > 1. (4.17 )

Now if Izi ~r, z¢=Fn , then by (4.11),

00 00

I IRk + 1,q(z)-Rk,q(z)1 ~ L <5p.
k=n k=n

Hence, for Izi ~ r, z¢= F = n:~ 1 Fb

exists. Note that for all k = 1, 2, 3,...

as k -400

by (4.17). Hence m,(F)=O. Further, uniformly for Izi ~r and z¢Fn ,

as n -4 ,x!.

Hence, R nq -4 gin mcmeasure in Izi ~ r, as n -400. I

(4.18 )

Proof of Theorem 2.1. We first show that the poles of R nq tend to the
poles off Let r> 1, and g be as in Lemma 4.4. By Lemmas 4.4 and 3.2(a),
g(z) must be meromorphic in Izi < r, with at most q poles there. Now (4.1)
shows that R nq converges in planar Lebesgue measure to f in compact sub­
sets of {z; Izi < r} not containing the poles off Further, every subsequence
of a sequence which converges in planar Lebesgue measure contains a sub­
sequence converging almost everywhere with respect to planar Lebesgue
measure.

From Lemma 4.4 we deduce thatf = g in Izi ~ r, except possibly on a set
of planar Lebesgue measure zero. As f and g are meromorphic in 1zl < r, we
deduce that f(z) = g(z).in Izi ~ r. Since r> 1 is arbitrary and both f and
R nq have at most q poles in C, Lemma 3.2(b) yields the result.

We next establish (2.13). Let r? 1 and let K be a compact subset of
{z; Izi ~ r} not containing the poles off Now the poles of R nq tend to the
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poles ofI as n -+ CfJ. Further, the set En, defined by (4.10), is contained in
at most q circles of radius n -L1 centered on the poles of R nq . It follows that
fer n large enough, En does not intersect K, and hence F,,, defined by
(4.16), does not intersect K. Then (4.18) shows that for:: EO K and for '1

large enough,

~

II(z) - Rnq(z)1 ~ I op
k=n

for n large enough. This proves (2.13). I

5. PROOF OF THEOREM 2.2

LEMMA 5.1. Let 1(::)= g(z)/P(z), where PI::) is a monic polynonual of
degree q and g(z) = Lt~o ajz j is entire, with

Let 0 < E < 1 < rand

lim sup la,llT, < 8< 1.
j~ x

'I" = er" n, II = 1, 2.....

(5.1 )

(5.2 \

Let {3 be as in (2.8B) and R"q as ill (2.16). Then there exis[s C and no
independent of' c: and r such that

for all n :;:': 11 0 for which

1],,1" < 1.

Proal Let

E I = {::: 1.:- 1~ I" and 1P(::) I :;:': £ :

£2= {z: Izi ~I" and IP(.:)I <c:}

Then as D(z. u) ~ 1 (by (2.6)),

(5.4 )

(5.5)

(5.6 )

~ II D(f R nq )df./+/l(E:c) +fl{Z: !zl :;:':r}. 15.7)
• E[
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Next, by (2.16) and (5.5), for zEEl>

If(z)-Rniz)1 «. flail rJ)!1;
;=n+1

<('. f er1rJ);1 I;

;=n+l

(by (5.1) for n large enough, say for n~nd. Now, by (2.11),

(5.8 )

rjj~r,,/n for j~ n,

=*" r; - r n ~ r,,(j/n - 1) = (r,./n)(j - n).

Hence, by (5.8), for zEE"

'x·

If(z)-R"q(z)1 <er"rnl;-I L elJ-r"rJ-"
)=n

00

< er"r" <; -I L e<r".:,,)(j- ,,) r j -"

i= fl

by (5.2), for n satisfying (5.4). By (2.8B), for zEE j ,

D(f(z), R"q(z)) <Cllffz) - R",Jz)l fJ

<C2(<;-1 er"r")fJ (1- 11"r)-fJ

for n ~ no and 11"r < 1, by (5.9). Hence, by (2.1),

(5.9 )

fJ D(}:R"q)du<C2(<;-le r"r")fJ(l-ll"r)-fJ (5.10)
E 1

for n large enough. Next, by Cartan's lemma (Lemma 3.1)

and then by (2.4),

p(E2 ) < (4n:e) I;lq.

Finally (5.7), (5.10), and (5.11) yield the result. I

(5.11 )

LEMMA 5.2. Let r> O. Then there exists C independent of r such that

p[z: 121 ~r}<Cexp(-Q(r)). (5.12 )
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Proof By (2.3) and converting to polar coordinates, we obtain

,u{z: jzl ~ r} = 2n f.oc s exp( -Q(s)) ds

=2n foc (sjQ'(s))exp(-Q(s))Q'(s)ds
'/

~ (2nr/Q'(r)) r' exp( -Q(s)) Q'(s) ds
/

~(2n/Q'(1))exp(-Q(r)). I

(by (2.2))

Proof of Theorem 2.2. With the notation of Lemma 5.1, let

so that

rn =11;;1;2, n= 1, 2, ... ,

as n~ CfJ

(5.13 )

by (5.2), (2.11), and as 0<8< 1. Then (5.4) holds for r=rn and n large
enough. Further, by (5.2) and (5.13),

(5.14 )

Then by (5.3), (5.12), and (5.14) with r=rll

PD(f, Rnq ) ~ C 1(e - 1 (Yni2)/3 (1 - '1 ~'2 )/3

+Clelq+Cexp(-Q('71~!/2)). (5.15)

We note that the choice of r = rn is possible as the constants in (5.3) are
independent of rand e. Now let

By (5.2) and (2.15) with P= 8 - L2, there exists C2 > 0 such that

(5.16 )

n large enough. (5.17)

Then by (5.15), (5.16), and (5.17) there exists C3 such that

PD(f, R llq ) ~ C 3(8
Tn (4){3 + C3(VniI4q) + C3 exp( -C2F n )·

Then (2.12) follows. I
Proof of Theorem 1.1. Let f be meromorphic in iC, of finite order, with

poles of total multiplicity q. Let P(z) be the monic polynomial of degree q

640;54;2-2
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whose roots are the poles of f, taking account of multiplicity. Then
g(z)=f(z)P(z) is entire, and by the elementary theory of meromorphic
functions (Hayman [3]), g has the same order as f Further, we can write

Xi

g(z) = I aiz i,
j~O

where, as g has finite order,

lim sup la;ll/(j'ogj) < 1.
j-x

If we choose

(5.18)

j=2,3, ...

then (2.14) follows fro (5.18). We can apply Theorem 2.2 provided we can
verify (2.15). In our case, Q(z) = exp Izl, so (2.15) is equivalent to

lim inf exp(p -log" )/(11 log 11) > 0
tl- CC,

for all 0 < p < 1. This is easy to verify. Hence R"q given by (2.16) satisfies
(2.12). Consequently if R:q is a best approximation (as in (1.3)) (2.12)
implies (1.4). Finally (1.5) is implied by (2.13). I
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