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We prove a de Montessus de Ballore type theorem for rational functicns R, of
type {# g) formed by best approximation over the whole plane to {unctions f(z})
meromorphic in the plane with exactly g poles. This resolves a question raised
by Lubinsky and Shisha (/. Approx Theory 36 (1982). 277-293). . 1988 Academ:c

Press, Inc.

1. INTRODUCTION

In [4], Lubinsky and Shisha considered best approximations of complex
functions f(z) by rational functions formed by minimizing a metric which
involves values of f(z) throughout the plane. They proved existence, non-
uniqueness, and that sequences of best approximations converge in planar
Lebesgue measure under general conditions. They also raised the question
as to whether there is an analog for these approximations of the classical de
Montessus de Ballore theorem for Padé approximations (see Baker [ 1],
Wallin [57). It is the purpose of this paper to answer their question in the
affirmative.

i shall now state a special case of our main result, for meromorphic
functions of finite order. Let 4, denote the class of rational functions with
numerator and denominator of degrees at most 1 and g, respectively. Let
Dz, u) denote the chordal metric on the Riemann sphere, that is,

~ — |z —ul - & o [P 3
D(;,u)—{(1+1212)(1+|u12)}1_,, ueC=Cu{w}, (1.1
and let
polfi ) =[] D(f(2), g(2)) exp(—exp(lz1)) dx dy. (12)

where z = x + iy for measurable functions £, g: C — C.
123
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124 I. MOMONIAT

THEOREM 1.1.  Let f be a meromorphic function of finite order in C, with
exactly q poles (counting multiplicity). For each positive integer n, let R}, be
a rational satisfying

polfs RY)=min{p,(f, R): RER,,}. (1.3)
Then
lim RY(z)=f(z)

H — ¢

uniformly in compact subsets of C not containing the poles of f. Further,

lim sup pp(f, R )lmloen < | (1.4)

nq
"o o
and uniformly in compact subsets of C not containing the poles, we have

lim sup [ f(z) — R%(2)]""oen < 1. (1.5)

" —

We remark that exp(—exp(|z|)) in (1.2) can be replaced by
exp(—Q(|z|)), where Q(r) is any positive, continuous function defined on
[0, o0) such that

lim Q(r)r *=w for all a>0.

r— o

Regarding the proofs, use is made of a lemma by Goncar [2] establishing
uniform convergence of a sequence of analytic functions given that they
converge in onc dimensional Hausdorff measure.

In Section 3, we prove a lemma which relates the uniform norm of a
polynomial in a disc to the size of the set on which the absolute value of
the polynomial is bounded by 1. Use is also made of Cartan’s lemma on
small values of polynomials, of standard measure-theoretic techniques, and
of the elements of complex analysis.

The paper is divided as follows: Section 2 clarifies the notation used in
this paper, and lists the main results. Section 3 proves lemmas needed for
the major results of this paper. Section 4 proves the theorem on uniform
convergence, while Section 5 proves a theorem relating to the rate of con-
vergence.

2. NOTATION AND STATEMENT OF RESULTS

(1) Throughout, meas will denote planar Lebesgue measure, and p
will denote a measure on the finite complex plane C, normalized so that

ﬂ duzﬂc du(z)=1. (2.1)
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Further, we shall assume that we are given a function Q(r), defined in
[0, =0}, such that

Q(r) is positive in [0, c0) and Q'(r)/r is non-decreasing in
[0, o). (2.2}

The measure g will be assumed to have density function e <. More
precisely, we assume that for every measurable set % in the plane

u(E) = HE exp(— 0(]z])) dx dy, (2.3)

where z = x -+ iy. Note that from (2.2) and (2.3)
U(E) < meas(E) (2.4}
for any measurable set E. Further if Ec {z:|z| <r},

wWE)=e 2 meas(E). (2.5}

(2) Throughout, as in Lubinsky and Shisha [47], D(z, #) willi denote
a fixed function, defined and continuous on C x C, satisfying

D(z,u)e {0, 1]
D(z,u)= D(u, z) (2.6}

D(z,u)=0<z=u.

We also assume that for each zeC,

D(z, c)= lim D(zq, u) exists and is positive, (2.7}

lul =

fol\ B
and we set
D(xc, 0)=0.
Finally, we shall need three more restrictions on D: Given a compact set
K< C, there exist positive constants C,; and o such that
Cilz—wi*< D(z, w), z,we k. (2.84)
Further, we shall assume that there exist positive constants C, and f such

that

D(z, w) < Cylz—wl?, z,weC. {2.8B)
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Given a bounded set K= C,

lim inf min{D(z, w): ze K} > 0. (2.9)

[w] — oo

We note that (2.6), (2.7), (2.8A), (2.8B), and (2.9) are satisfied by the chor-
dal metric in (1.1).

(3) Corresponding to D, we define a distance between (Borel)
measurable functions f; g: C - Cu {0} by

polf, )= [ DU, 8) du. (2.10)

(4) Throughout C, C,, C,, C;,... denote positive constants indepen-
dent of » and z. The same symbol C may denote different constants from
line to line. {I",} , will denote a sequence of positive numbers such that
I',/n increases as n increases, and

lim I",/n= 0. (2.11)

n— o
The most important example is
I',=nlogn, n=27324,..,

which arises in considering meromorphic functions of finite order.

(5) Given non-negative integers # and ¢, the class of rational
functions with complex coefficients and numerator and denominator
degrees at most » and g, respectively, will be denoted by #,,.

We can now state our main results. The following is an analog of the de
Montessus de Ballore theorem for Padé approximants (Baker [1, p. 1397).
The distinguishing feature of such a result is that without any a priori
assumptions about the poles of the rational functions we obtain uniform
convergence of these functions.

THEOREM 2.1. Let g be a non-negative integer. Let f be meromorphic in
C with exactly q poles, counting multiplicity. Let p, be a distance function
satisfying (2.1)~(2.10), and let {I',} satisfy (2.11). Let there be given
rational functions R, € R,,, n=1,2,3,..., such that

ng s

lim sup p,(f, R,,)""" < 1. (2.12)

n— oG
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Then the only limit points of the poles of {R,, ;.. are the poles of f and

lim sup | f(z)— R, (2} <1, (213

n— oc

uniformly in compact subsets of C not containing the poles of f.

The next result shows that, under certain additional assumptions, one
can find a sequence of rational functions satisfying (2.12}.

THEOREM 2.2. Let f(z)= ( Y P(z), where P(z) is a monic polvnomial of
degree q, and g(z)=3%* ,a;z’ is ennre with

limsup |a|" " < 1. (2.14)
Jorx
Assume further that
llnrrlglfQ p ™I, >0, (2.15)
forall 0<p<l. Let
R, (2)= ( io ajzj> /P(z), n=1,2 3., (2.16}
Y .

then (2.12) holds.

Remarks. (i) The condition (2.15) can be substantially weakened, but
we omit the more cumbersome formulation.

(i) Theorem 1.1 is an easy consequence of Theorem 2.1 and
see Section 5.

2.2

(ifi) It is easy to see that for a given function f{z) that is
meromorphic in € with exactly ¢ poles, one can always represent [ in the
form f= g/P, as in Theorem 2.2, and one can find {7} and Q satisfying
{2.2), (2.11), (2.14), and (2.15). Hence, Theorems 21 and 2.2 may be
applied in a wide variety of situations.

(6) In some proofs, we shall use the concept of one dimensional
Hausdorff content. Given E< C, we set

E)—m.{z d(B ;) B,}k

Here the inf is over all countable sequences of balls {B;} with diameters
{d(B;)} whose union covers E. Given functions /. f, f5..., and a bounded
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measurable set K, we say that f, converges to f in m,-measure in K if for
cach ¢>0

m{zeK:|f(z)—f(z)| >¢e} -0 as Hn-—» 0.
Further we say that f, converges to f almost everywhere with respect to m,
in K if

m{ze K:limsup | f,(z) — f(z)| >0} =0.

n— o0

3. PRELIMINARY LEMMAS

LeMMA 3.1 (Cartan’s lemma for planar Lebesgue measure). Ler P(z) be
a monic polynomial of degree n= 1. Let H>0. Then the inequality

|P(z)| > H"

holds outside at most n balls, whose union has planar measure at most 4me H>.
Further, the sum of diameters of these balls is ar most 4neH.

Proof. See Baker [1, p. 194]. 1}

LemMa 3.2 (Goncar). Suppose that the sequence {f,} converges to the
function fin m, measure inside the domain Q. Assume also that each of the
functions f, (n=1, 2,...) is meromorphic in Q and has at most q (<o) poles
in Q. Then

(a) f is meromorphic and has at most q poles in Q.

(b) If f has exactly q poles in Q, then for n large enough, we have that
[ also has exactly q poles in €2, and the poles of the functions f, tend to the
poles z,, z,,..., z,, (taking account of multiplicity) of f, and the sequence { f,}
converges uniformly on the compact subsets of Q' =Q/{z,}9_,.

Proof. See Goncar [2, p. 507]. 1

LemMa 3.3. Let O0<e<1 and r>0. Assume P(z) is a polynomial of
degree at most n, satisfying

meas{z: |z|<r and |P(z)|<1}>e (3.1)
Then for |z| <r,
|P(z)] < (c max{1, r}/e)", (3.2)

where c is independent of n, P, ¢, and r.
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Proof. We note that the result is trivial if P=0. So assume P # 0. Then
we may write

nt n

P =8 [T lz—=f [T It—zzl. (331

i=1 t=m+1

where >0, 0<m<n'<n, 2, 25,0, 2, lie in {z:]2| <2r} and z,,, ;... Z,
lie in {z:]z| >2r}. Suppose first m =0. Then

\PE) =6 [] 11 —z/z

i=1

>6/2" for jzi<r

,m
b
N

Since the set in (3.1) is non-empty, we deduce
82" <1
so that, by (3.4), for |z| <7,

[P(2) <27 [T N —z/z

i=1

27 (3/2y"

NN
e

This establishes (3.2) in the case m =0. Suppose next m> 0. By (3.3}, for
Izl <r,

m
l_[! —zf (5

so that, by (3.1),

b4
5<meas{z:|z|<r and 4[] lz—z,] (%)"'*""<1$

i=1 J
“ . —1 n'—m)
S<meas<z: [[ lz—5)<6 "2 ¢
i=1 P
Lder(o "' 27 —my2m by Lemma 3.1,

Therefore,

8 < (demfe)™ 2%~ < (c/e),
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where ¢ is independent of n, P, ¢, and r. Then, by (3.3), for |z| <¥,
|P(2)] < (c/e)" (3ry™ (3/2) ™

< (cmax{l,r}/e)". 1|

4. PrROGF OF THEOREM 2.1

We divide the proof of Theorem 2.1 into a series of lemmas. Throughout
this section we assume that fand {R,,} are as in Theorem 2.1, and that, in
particular, {R, } satisfies (2.12).

nq

LemMma 4.1. Let r=1, {z,}9_, be the poles of f. Let 0<n<min
{1, nr*/(2q)}. Then there exists 0 < & < 1 < S such that for all n large enough,

meas{z: |z| <r and |z —z]| >, i=1,2,..,q
and |f—R,,|(z) =67} < S~ (4.1)

Proof. By (2.10) and (2.12), there exists 0 <8 <1 such that for large
enough n,

[ D(f, R,y du< 6. (4.2)

Let K> 1 be such that K8 <1, and let
4, ={z:|zI<rand |z—z|>n, i=1,2,.,q
and D(f(2), R,,(2)) = (K6)'"}.
Now, by (4.2),
H(%,)(KO) =< 6.
Therefore, (4.3)
wEG)<K "
Hence, by (2.5) and (4.3),
meas(¥,) <e?pu(%,)
<Ky
for n large enough, where K’ > 1. Now let
F={z:|z|<r and |z—z|>n, i=1,2,.,q}.

Then f(F)={f(z): ze F} is bounded.
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Further, if ze F\%,, then for any >0, we have
D(f(2), R,,(z)) < (KO)Y "<& (4.5;

for n large enough. It follows from (2.9) that there exists a positive constant
C and a positive integer n, such that

IR, (z)| <C, ze F\%,, n>=n,.

Then by (2.8A), there exists C, and a > 0 independent of n such that
CUfE) = R (2)* < D(f(2), R,(2)),  zeF\%4,, n=n,.
Hence, by (4.5), for n=n, and ze F\¥%,,
| f{z) = R, ()] < Co(KO) ™
<o, (4.6}
where 6 € (0, 1). Finally, if
reH,={z:lzI<rand |z—z|2n i=12,..,4,
and |f—R,,I(z)>3"]
then ze F. But z ¢ F\%, by (4.6). Hence,
H,cFn9¥,.

In particular, it follows from (4.4) that

meas(H,) < meas(¥4,) <(K'} '

Hence the result. §

LemMa 4.2. Under the conditions of Lemma 4.1 there exists 0 <& <
P < 8 such that, for all n large enough,
meas{z:|z]<r and |z—z|2n, i=1,2,.,4,
and |R, ., (z)— R, (=) =V} <(8) . (47)
Proof. 1If
IRy, 1,2)— R, (2)] =267

then either

|f(:) - an(z)| 2 51-”
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F(2) = Ry 1 (2)] 2 8751,
Hence, by Lemma 4.1
meas{z: |z|<r and |z—z|>n, i=12,..,4,
and |R,,,(z)— R, (2) 226"} <28~

The lemma follows by choosing suitable " and S". |

LEMMA 4.3. Assume the conditions of Lemmas 4.1 and 4.2. Further, write

R, (z) = P(2)/Q,(2); (4.8)

where P, and Q, are polynomials of degree at most n and q, respectively, and
Q, is normalized so that

Q"(Z)Z l_[ (Z_Zni) l_[ (I_Z/Zni)> (49)

|znil < 2r lzpil > 2r

and z,), 2,5,y 2, ave the zeros of Q,. Let 4> 1 and

E,,={z: IT |z—zm-I<n"4"}, n=1,23,... (4.10)
[

Zl < 2r

Then there exists 0 <8, <1 such that for n large enough,
Ry 1.4(2) = Rog() < 6] for |z|<r,z¢ E,VE, ;. (411)
Proof. For n large enough, let
H,(z2)="P,,(2) Qu(2) = Py(2) @ s1(2) (4.12)
=(Ry;1,(2)— R, (2)) @.(2) @, +1(2). (4.13)
From (4.9), and as r> 1,
1Q.(2)|<(3r)!,  for |z/<r
Therefore for |z| <r,
|H,(2)] S (3r)* |R,, ;. 1 ,(2) = Ryy(2)].
From Lemma 4.2,

meas{z: |z|<r and |z—z|27n, (i=1,2,.,49)

and |H,(z)| = (3r)? (8"} <(8)~ ™
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Let 6" <" < 1. Then for # large enough,

I

meas{z:|z|<r and |H,(2)| <3V} =nr’ —gn—1(S) "

P2 — (S

\Y%
a

A\

(1

>

as gn<wr’/2 and if n is large enough. Applying Lemma 3.3 to the
polynomial

which is of degree at most v+ g+ 1, we obtain

max{|H,(z)|: |z| <r} <(8") " {c2r) T 74, (4.14}

where ¢ is independent of n. Next, if |z,,| = 2r and 2| <7,
|1 _Z./zni| > %*
so from (4.9)

10.(=)1227"n"%,  |z|<r, z¢E,. (4.15}

Then (4.13), (4.14), and (4.15) show that for |z} <rand z¢ E, U E

a+ 1
|R, 1 1.(2) = R p(2) <(8") " (c2r)" 1+ 2% 0% (n+ 1)1,
Clearly (4.11) follows with a suitable choice of §,. §
LEMMA 4.4. Assume the conditions of Lemmas 4.1, 4.2, and 4.3. Then

there exists a function g, defined everywhere except possibly on a set I of

m,-measure zero, such that R, converges to g in m-measure in {z|<r as
n— o, and

nq

lim R,(:)=g(z), :¢F.

Proof. For n large enough, let

F,= ) E. (4.16)
k=n

Now by Cartan’s lemma (Lemma 3.1), and by (4.10),

m(E,) < denn 4.
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Hence,

my(F,)<4en Z k=4
k=n

-0 as n— oo, since 4> 1. (4.17)

Now if |z] <r, z¢ F,, then by (4.11),

z |Rk+1q Rk,q(z)|< Z 5{7‘
= k=n

Hence, for |z| <1, z¢ F= N7, Fe,
g(Z)=k1iH:O qu(z)

exists. Note that for all k=1, 2, 3,...

m(Fysm,(F)—0 as k— o

by (4.17). Hence m,(F)=0. Further, uniformly for |z| <r and z¢ F,

18(2)— Ruf(2) = | 3 (Rev1.0(2)— Reo(2))

-0 as n-— . (4.18)
Hence, R,, - g in m-measure in |z| <r, as n—»> w. |

Proof of Theorem 2.1. We first show that the poles of R,, tend to the
poles of f. Let r > 1, and g be as in Lemma 4.4. By Lemmas 4.4 and 3.2(a),
g(z) must be meromorphic in |z| <r, with at most ¢ poles there. Now (4.1)
shows that R,, converges in planar Lebesgue measure to f'in compact sub-
sets of {z: |z] <r} not containing the poles of /. Further, every subsequence
of a sequence which converges in planar Lebesgue measure contains a sub-
sequence converging almost everywhere with respect to planar Lebesgue
measure.

From Lemma 4.4 we deduce that f = g in |z| < r, except possibly on a set
of planar Lebesgue measure zero. As f and g are meromorphic in |z] <r, we
deduce that f(z)= g(z) in |z| <r. Since r>1 is arbitrary and both f and
R,, have at most g poles in C, Lemma 3.2(b) yields the result.

We next establish (2.13). Let »>1 and let K be a compact subset of
{z:|z| <r} not containing the poles of /. Now the poles of R,, tend to the
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poles of f as n— co. Further, the set E,, defined by (4.10), is contained in
at most ¢ circles of radius n~“ centered on the poles of &,,. It follows that
for n large enough, E, does not intersect X, and hence F,, defined by

(4.16), does not intersect K. Then (4.18) shows that for —e X and for =
large enough,

If(Z)—an(Z”< Z 51:‘(

<281

for n large enough. This proves (2.13). §

5. PROOF OF THEOREM 2.2

Lemma 510 Let f(z)= g(z)/P(z), where P(z) is ¢ monic polvuomial of

degree q and g(z) =3, a;z’ is entire, with

lim sup [a,|' "< 8 < L (5.1
J—= '
LetO<s<l<r and
n,=0"" n=1,2... (5.2}

Let f§ be as in (2.8B) and R,,
independent of ¢ and r such that

as in (2.16). Then there exists C and n,

pol i RS CE™ P (1 —n, ) + Ce + pizo Izl =rp (5.0

for all n = ng for which

7,7 <1l (5.4,

Proof. Let
E ={z:]|z|<r and |P(z})| >¢; {5.5)
E,={z:|z| <r and |P(z)l <eg}. {5.6}

oo(fs Ry) = || DUS R,,) di

N
L
3

| DU R ydu+ pEny+ iz sl 20} 157
vYE

1
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Next, by (2.16) and (5.5), for ze E,,

1f(z)—Rm,<z)1<( S g ,-f) /g

Jj=n+1

/ o

<( y Gr'r-’)//s (5.8)

j=n+1

(by (5.1) for n large enough, say for n = #n,). Now, by (2.11),
Ljj=T,/n for j=n,
:Fj~rrz>rn(j/n—— 1)=(f,,/l’l)(j—n).
Hence, by (5.8), for ze E|,
IAz) =R, ()| <O rme™! Z Qli=fapi—n
Jj=n

(v 8]
< Hl"nrng—l 2 9(1',13'1)(/—'1),.1*"

j=n

=0T e (1—n,r)! (5.9)
by (5.2), for n satisfying {5.4). By (2.8B), for ze E|,
D(f(2), R, (2) S C4| f(2) = R, (2)|”
<Cyle MO P (L—n,r)

for nzn, and #,r < 1, by (5.9). Hence, by (2.1),

([ DU R, ) du< Cote™ 07y (L—,r) (5.10)

E
for n large enough. Next, by Cartan’s lemma (Lemma 3.1)
meas(F,} < (4ne) '/
and then by (2.4),
p(E,) < (4ne) ' . (5.11)
Finally (5.7), (5.10), and (5.11) yield the result. J

LeMMA 5.2. Let r>0. Then there exists C independent of r such that

pliz: |zl = r} < Cexpl(—Qfr)). (5.12)
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Proof. By (2.3) and converting to polar coordinates, we obtain
plziizlzrl=2n J sexp(—0(s)) ds

=2 [ (5/Q(5)) exp(— 0(5)) ©'(s) ds

~r

<@rrQ'(r) [ exp(—Q() Q'(s)ds (by (22))

< (2n/Q'(1)) exp(—Q(r)). §
Proof of Theorem 2.2. With the notation of Lemma 5.1, let
Fo=n712 n=1,2.., (5.13)
so that

Hatp=HY>—=0 as n—w

by (5.2), (2.11), and as 0 <8< 1. Then (5.4) holds for r=r, and n large
enough. Further, by (5.2) and (5.13),

r=0-""7 (5.14)
Then by (5.3), (5.12), and (5.14) with r=r,
polfs Ry) SCi(e™1072) (1—n))P
+C,e"+ Cexp(—Q(n, ') (5.153

We note that the choice of r=r, is possible as the constants in (5.3) are
independent of  and s. Now let

g=¢g, =04 (5.16)
By (5.2) and (2.15) with p =802, there exists C, >0 such that
on'"H=C,r,, n large enough. (517
Then by (5.15), (5.16), and (5.17) there exists € such that
pp(fy Ruy) S C5(07 ) + €079 4 Cy exp(—C, 1)
Then (2.12) follows. §

Proof of Theorem 1.1. Let f be meromorphic in C, of finite order, with
poles of total multiplicity g. Let P(z) be the monic polynomial of degree g

640;54;2-2
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whose roots arc the poles of f, taking account of multiplicity. Then
g(z)=f(z) P(z) is entire, and by the elementary theory of meromorphic
functions (Hayman [3]), g has the same order as f. Further, we can write

where, as g has finite order,

lim sup |a,| V'8 ) < 1. (5.18)

Jj—
If we choose
I'i=jlogj, j=2,3,.

then (2.14) follows fro (5.18). We can apply Theorem 2.2 provided we can
verify (2.15). In our case, Q(z) =exp|z|, so (2.15) is equivalent to

lim inf exp(p ~'°#")/(n log n) >0

n— oc

for all 0 < p < 1. This is easy to verify. Hence R, given by (2.16) satisfies
(2.12). Consequently if RY is a best approximation (as in (1.3)) (2.12)
implies (1.4). Finally (1.5) is implied by (2.13). ||

ACKNOWLEDGMENT

This paper would not have been possible without the kind and patient guidance of my
supervisor, Doron Lubinsky. I would like to thank him for his help in this regard.

REFERENCES

1. G. A. BAKER, Jr, “Essentials of Padé Approximants,” Academic Press, New York, 1975.

2. A. A. GoNcar, On the convergence of generalized Padé approximants of meromorphic
functions, Math. USSR-Sb. 27 (1975), 503-514.

3. W. K. HayMaN, “Meromorphic Functions,” Oxford Univ. Press, London/New York, 1964.

4. D. S. LuBinsky anND O. SHisHA, Best approximation over the whole complex plane,
J. Approx. Theory 36 (1982), 277-293.

5. H. WaLLIN, Potential theory and approximation of analytic functions by rational inter-
polation, in “Proceedings, Colloq. on Complex Analysis at Joensuu,™ pp. 434450, Lecture
Notes in Math. Vol. 747, Springer-Verlag, Berlin/New York, 1979.



